深度学习的表现以检索方式实现了出色的图像检索性能。启发式融合本地和全球特征的最新最先进的单阶段模型可以在效率和有效性之间取决于有希望的权衡。但是,我们注意到由于其多尺度推理范式,现有解决方案的效率仍受到限制。在本文中,我们遵循单阶段的艺术,并通过成功摆脱多尺度测试来获得进一步的复杂性效应平衡。为了实现这一目标,我们放弃了广泛使用的卷积网络,从而限制了探索各种视觉模式的局限性,并诉诸完全基于注意力的框架,以通过变形金刚的成功动机,以实现强大的表示学习。除了将变压器应用于全局特征提取外,我们还设计了一个本地分支,该分支由基于窗口的多头注意力和空间注意力组成,以完全利用本地图像模式。此外,我们建议通过交叉意见模块组合分层本地和全球特征,而不是像以前的艺术一样使用启发式融合。借助我们深入的本地和全球建模框架(DALG),广泛的实验结果表明,效率可以显着提高,同时保持艺术状态的竞争成果。
translated by 谷歌翻译
作为面向任务的对话系统中的重要组成部分,对话状态跟踪(DST)旨在跟踪人机相互作用并生成用于管理对话的状态表示。对话状态的表示取决于域本体论和用户的目标。在几个面向任务的对话中,目标范围有限,对话状态可以表示为一组插槽值对。随着对话系统的功能扩展以支持沟通中的自然性,将对话行为处理纳入对话模型设计变得至关重要。缺乏这种考虑限制了对话跟踪模型的可扩展性,以实现特定目标和本体。为了解决这个问题,我们制定和纳入对话行为,并利用机器阅读理解的最新进展来预测多域对话状态跟踪的分类和非类别类型的插槽。实验结果表明,我们的模型可以提高对话状态跟踪在Multiwoz 2.1数据集上的总体准确性,并证明合并对话行为可以指导对话状态设计以实现未来的面向任务的对话系统。
translated by 谷歌翻译
未来的机场变得越来越复杂,并且随着旅行者数量的增加而拥挤。尽管机场更有可能成为潜在冲突的热点,这可能会导致航班和几个安全问题的严重延误。一种使安全监视更有效地检测冲突的智能算法将在其安全,财务和旅行效率方面为乘客带来许多好处。本文详细介绍了机器学习模型的开发,以对人群中的冲突行为进行分类。 HRNET用于分割图像,然后采用两种方法通过多个分类器对框架中的人的姿势进行分类。其中,发现支持向量机(SVM)达到了最出色的精度为94.37%。该模型不足的地方是反对模棱两可的行为,例如拥抱或失去框架中主题的轨道。如果进行改进以应对大量潜在的乘客,以及针对在机场环境中会出现的进一步歧义行为的培训,则最终的模型具有在机场内部署的潜力。反过来,将提供提高安全监视并提高机场安全的能力。
translated by 谷歌翻译
数据保护法规中规定的权利允许患者要求数据持有人消除有关其信息的知识。随着AI在数据上学习的出现,人们可以想象,这种权利可以要求忘记AI模型中患者数据知识的要求。但是,忘记了来自AI模型的患者的成像数据仍然是一个爆炸案。在本文中,我们研究了患者数据对模型性能的影响,并为患者的数据提出了两个假设:他们是常见的,并且与其他患者相似,或者形成边缘病例,即独特的和罕见的病例。我们表明,不可能轻松地忘记患者数据。我们提出了一种有针对性的遗忘方法,以执行患者遗忘。基准自动化心脏诊断挑战数据集的广泛实验展示了所提出的目标遗忘方法的性能,而不是最先进的方法。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译